
DevOps 101DevOps 101
An Intro to Developer

Operations within
$REDACTED

Monitoring Solutions

An Intro to Developer
Operations within

$REDACTED
Monitoring Solutions

What is DevOps?What is DevOps?

 DevOps is the alignment of people, practices, tools and philosophies to increase an
organization’s ability to deliver services at higher velocity. This speed enables organizations
to better serve their customers, and to compete in a rapidly-evolving market.

 DevOps is the alignment of people, practices, tools and philosophies to increase an
organization’s ability to deliver services at higher velocity. This speed enables organizations
to better serve their customers, and to compete in a rapidly-evolving market.

What is DevOps?What is DevOps?

 At the core, DevOps is about the cultural shift towards Continuous Improvement (or the philosophy
of Kaizen, as it’s known in Japan).

 The Kaizen philosophy was pioneered by Toyota in the early 1970s, and has since spread throughout the
manufacturing industry. Only in recent years have IT organizations begun to adopt this mindset.

 Kaizen’s goals are:

 To ensure maximum quality

 Eliminate waste within business processes

 Improve operational efficiency through the standardization of tools and procedures

 Provide consistent and clear feedback

 Empower employees to identify areas for improvement and suggest practical solutions

 “If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes
thinking about solutions.” – (Albert Einstein)

 At the core, DevOps is about the cultural shift towards Continuous Improvement (or the philosophy
of Kaizen, as it’s known in Japan).

 The Kaizen philosophy was pioneered by Toyota in the early 1970s, and has since spread throughout the
manufacturing industry. Only in recent years have IT organizations begun to adopt this mindset.

 Kaizen’s goals are:

 To ensure maximum quality

 Eliminate waste within business processes

 Improve operational efficiency through the standardization of tools and procedures

 Provide consistent and clear feedback

 Empower employees to identify areas for improvement and suggest practical solutions

 “If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes
thinking about solutions.” – (Albert Einstein)

What is DevOps?What is DevOps?

 “Improving daily work is even more important than doing daily work.” – (Gene Kim, The
Phoenix Project)

 Further reading:

 The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win

 The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations

 “Improving daily work is even more important than doing daily work.” – (Gene Kim, The
Phoenix Project)

 Further reading:

 The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win

 The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations

https://www.amazon.com/Phoenix-Project-DevOps-Helping-Business/dp/0988262592
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/ref=sr_1_3?keywords=the+devops+handbook&qid=1566419120&s=books&sr=1-3
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/ref=sr_1_3?keywords=the+devops+handbook&qid=1566419120&s=books&sr=1-3
https://www.amazon.com/Phoenix-Project-DevOps-Helping-Business/dp/0988262592
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/ref=sr_1_3?keywords=the+devops+handbook&qid=1566419120&s=books&sr=1-3
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/ref=sr_1_3?keywords=the+devops+handbook&qid=1566419120&s=books&sr=1-3

Why do we need DevOps?Why do we need DevOps?

 Imagine that you are
building a car. Now,
imagine that the
various teams
involved work in total
isolation. This
assembly line is
essentially what we
have today:

 Imagine that you are
building a car. Now,
imagine that the
various teams
involved work in total
isolation. This
assembly line is
essentially what we
have today:

Why do we need DevOps?Why do we need DevOps?

 This type of
environment leads to
“over-the-wall
development”
practices.

 OTW practices lead
to:

 Anger & Contention

 Tears & Frustration

 Fear & Apathy

 This type of
environment leads to
“over-the-wall
development”
practices.

 OTW practices lead
to:

 Anger & Contention

 Tears & Frustration

 Fear & Apathy

GoalsGoals

Short-termShort-term
 Leverage existing technologies to “buy

ourselves time” to work on more
important initiatives

 Identify current deficiencies, and discuss
paths towards resolution

 Leverage existing technologies to “buy
ourselves time” to work on more
important initiatives

 Identify current deficiencies, and discuss
paths towards resolution

Medium-termMedium-term
 Introduce new practices and

technologies that make everyone’s work
easier

 Develop proofs-of-concept that
demonstrate the value that DevOps
practices have to offer

 Begin to adopt new forms of software
development, testing, and management
architectures

 Introduce new practices and
technologies that make everyone’s work
easier

 Develop proofs-of-concept that
demonstrate the value that DevOps
practices have to offer

 Begin to adopt new forms of software
development, testing, and management
architectures

GoalsGoals

Long-termLong-term
 Adopt bleeding-edge technologies and processes that will make us the best DevOps

team within $REDACTED Technologies

 Re-architect our software to follow industry best practices (such as the Twelve-Factor App)

 Automate the DevOps team out of work, making every other member of STOP a
competent DevOps engineer in the process

 Develop a flexible, modular DevOps migration and knowledge transfer program

 Provide world-class reliability, security and efficiency for our customers

 Adopt bleeding-edge technologies and processes that will make us the best DevOps
team within $REDACTED Technologies

 Re-architect our software to follow industry best practices (such as the Twelve-Factor App)

 Automate the DevOps team out of work, making every other member of STOP a
competent DevOps engineer in the process

 Develop a flexible, modular DevOps migration and knowledge transfer program

 Provide world-class reliability, security and efficiency for our customers

https://12factor.net/
https://12factor.net/

How will we achieve our long-term goals?How will we achieve our long-term goals?

The First WayThe First Way
 The First Way states the following about the flow

of work:

 Work should only flow in one direction

 No known defect should be passed downstream

 Always seek to increase the flow

 The First Way helps us think of IT as a value
stream. Think of a manufacturing line, where
each work center adds a component – and
thus, value – to the line. Since each work center
adds value, it is preferred that each work center
does their part correctly the first time around.

 The First Way states the following about the flow
of work:

 Work should only flow in one direction

 No known defect should be passed downstream

 Always seek to increase the flow

 The First Way helps us think of IT as a value
stream. Think of a manufacturing line, where
each work center adds a component – and
thus, value – to the line. Since each work center
adds value, it is preferred that each work center
does their part correctly the first time around.

How will we achieve our long-term goals?How will we achieve our long-term goals?

The Second WayThe Second Way
 The Second Way describes the feedback

process as the following:

 Establish an upstream feedback loop

 Shorten the feedback loop

 Amplify the feedback loop

 The Second Way teaches us to think of
information as a value-addition. When used
correctly, feedback can help to optimize the
value stream.

 “Why was there so much wait time at this work
center? Resource A was held up.”

 “Why did this process have to be redone?
Because it wasn’t done right the first time.”

 The Second Way describes the feedback
process as the following:

 Establish an upstream feedback loop

 Shorten the feedback loop

 Amplify the feedback loop

 The Second Way teaches us to think of
information as a value-addition. When used
correctly, feedback can help to optimize the
value stream.

 “Why was there so much wait time at this work
center? Resource A was held up.”

 “Why did this process have to be redone?
Because it wasn’t done right the first time.”

How will we achieve our long-term goals?How will we achieve our long-term goals?

The Third WayThe Third Way
 The Third Way describes environment and culture

through the following practices:

 Promote experimentation

 Learn from success and failure

 Constant improvement

 Seek to achieve mastery through practice

 The Third Way teaches us that culture and
environment are just as important as the work being
done. It advocates a culture of experimentation
and constant improvement. This results in measured
risks and being rewarded for good results.

 The Third Way describes environment and culture
through the following practices:

 Promote experimentation

 Learn from success and failure

 Constant improvement

 Seek to achieve mastery through practice

 The Third Way teaches us that culture and
environment are just as important as the work being
done. It advocates a culture of experimentation
and constant improvement. This results in measured
risks and being rewarded for good results.

How will we achieve our long-term goals?How will we achieve our long-term goals?

Important ConceptsImportant Concepts
 Continuous Integration (i.e. Pipelines)

 Continuous Deployment

 Continuous Delivery

 Configuration Management

 Containers

 Environments

 Continuous Integration (i.e. Pipelines)

 Continuous Deployment

 Continuous Delivery

 Configuration Management

 Containers

 Environments

 Infrastructure-as-code

 Immutability

 Imperative vs. Declarative Syntax

 Semantic Versioning

 Version Control

 Infrastructure-as-code

 Immutability

 Imperative vs. Declarative Syntax

 Semantic Versioning

 Version Control

Concepts: Version ControlConcepts: Version Control

DefinitionDefinition
 Version control is a system that records

changes to a file or set of files over time
so that you can recall specific versions
later.

 Version control is a system that records
changes to a file or set of files over time
so that you can recall specific versions
later.

 Clone

 Remotes (upstream)

 Commits

 Branches

 Merges

 Tags

 Push

 Pull

 Clone

 Remotes (upstream)

 Commits

 Branches

 Merges

 Tags

 Push

 Pull

GitGit

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-branch
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-tag
https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-pull

Concepts: EnvironmentsConcepts: Environments

DefinitionDefinition
 An environment is the computer system (or systems)

in which a computer program or software
component is deployed and executed. In simple
cases, such as developing and immediately
executing a program on the same machine, there
may be a single environment, but in industrial use
the development environment (where changes are
originally made) and production environment
(what end users use) are separated; often with
several stages in between. This structured release
management process allows phased deployment
(rollout), testing, and rollback in case of problems.

 An environment is the computer system (or systems)
in which a computer program or software
component is deployed and executed. In simple
cases, such as developing and immediately
executing a program on the same machine, there
may be a single environment, but in industrial use
the development environment (where changes are
originally made) and production environment
(what end users use) are separated; often with
several stages in between. This structured release
management process allows phased deployment
(rollout), testing, and rollback in case of problems.

 Development

 Code committed to the “development”
branch

 Alpha

 Code committed to the “master” branch

 Integration/Reseller/Production/Other

 Code committed to the “master” branch,
and tagged with a version

 Development

 Code committed to the “development”
branch

 Alpha

 Code committed to the “master” branch

 Integration/Reseller/Production/Other

 Code committed to the “master” branch,
and tagged with a version

Examples (related to git)Examples (related to git)

Concepts: Declarative vs. ImperativeConcepts: Declarative vs. Imperative

Imperative SyntaxImperative Syntax
 Code that describes “how” a program

should function.

 Example:

 if $APPLE is “ripe” AND $USER is “hungry”

 then

 cut apple

 eat apple

 dispose of core

 done

 Code that describes “how” a program
should function.

 Example:

 if $APPLE is “ripe” AND $USER is “hungry”

 then

 cut apple

 eat apple

 dispose of core

 done

Declarative SyntaxDeclarative Syntax
 Code that describes “what” you need a

program to do.

 Example:

 Eat the apple

 Code that describes “what” you need a
program to do.

 Example:

 Eat the apple

Concepts: Declarative vs. ImperativeConcepts: Declarative vs. Imperative

Declarative syntaxes lead to better
imperative code

Declarative syntaxes lead to better
imperative code

 Ultimately, most code is imperative. Declarative syntaxes are
a high-level abstraction of the underlying imperative code.

 Declarative code tends to be easier to use, easier to scale,
and easier to manage.

 However, it requires a deeper-level of understanding from
developers about their code. Despite this, the
Twelve-Factor App states that declarative code lowers the
barrier-to-entry for new employees.

 The Unix philosophy emphasizes building simple, short, clear,
modular, and extensible code that can be easily maintained
and repurposed by developers other than its creators. The
Unix philosophy favors composability over monolithic design.
Declarative syntaxes enable this paradigm.

 Ultimately, most code is imperative. Declarative syntaxes are
a high-level abstraction of the underlying imperative code.

 Declarative code tends to be easier to use, easier to scale,
and easier to manage.

 However, it requires a deeper-level of understanding from
developers about their code. Despite this, the
Twelve-Factor App states that declarative code lowers the
barrier-to-entry for new employees.

 The Unix philosophy emphasizes building simple, short, clear,
modular, and extensible code that can be easily maintained
and repurposed by developers other than its creators. The
Unix philosophy favors composability over monolithic design.
Declarative syntaxes enable this paradigm.

Declarative-friendly stuffDeclarative-friendly stuff
 Most command-line programs

 Most configuration file formats

 All SQL statements

 Most APIs

 Most data storage formats

 Most DevOps tooling

 Most command-line programs

 Most configuration file formats

 All SQL statements

 Most APIs

 Most data storage formats

 Most DevOps tooling

https://12factor.net/
https://en.wikipedia.org/wiki/Unix_philosophy
https://12factor.net/
https://en.wikipedia.org/wiki/Unix_philosophy

Concepts: Imperative SyntaxConcepts: Imperative Syntax

According to operations:According to operations:
 I don’t understand this code!

 Why is this so complicated?

 Why can’t we re-use this code?

 I don’t understand this code!

 Why is this so complicated?

 Why can’t we re-use this code?

Example (Bash)Example (Bash)

According to developers:According to developers:

 I barely understand my own code!

 I can’t make it any simpler!

 My code is too complicated to re-use across
environments!

 I barely understand my own code!

 I can’t make it any simpler!

 My code is too complicated to re-use across
environments!

Concepts: Declarative SyntaxConcepts: Declarative Syntax

According to operations:According to operations:
 This kind of code feels so familiar!

 This configuration is so easy to use!

 I just want to “do the thing” – I don’t care
“how!”

 This kind of code feels so familiar!

 This configuration is so easy to use!

 I just want to “do the thing” – I don’t care
“how!”

Example (YAML)Example (YAML)

According to developers:According to developers:

 I hate YAML!

 I need flexibility, and freedom!

 I don’t want to learn a new format!

 I hate YAML!

 I need flexibility, and freedom!

 I don’t want to learn a new format!

Concepts: Configuration ManagementConcepts: Configuration Management

DefinitionDefinition
 Configuration Management refers to the

process of systematically handling changes
to a system in a way that maintains integrity
over time.

 Automation plays an essential role in
configuration management. It is the
mechanism by which the server reaches its
(declarative) desired state, which was
previously defined by using (imperative)
provisioning scripts in a tool-specific
language.

 Configuration Management refers to the
process of systematically handling changes
to a system in a way that maintains integrity
over time.

 Automation plays an essential role in
configuration management. It is the
mechanism by which the server reaches its
(declarative) desired state, which was
previously defined by using (imperative)
provisioning scripts in a tool-specific
language.

 Salt in 10 Minutes

 States (imperative)

 Pillars (data/declarative)

 Grains

 The Top File

 Targeting

 Orchestrations

 Salt in 10 Minutes

 States (imperative)

 Pillars (data/declarative)

 Grains

 The Top File

 Targeting

 Orchestrations

SaltstackSaltstack

https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/getstarted/config/pillar.html
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/orchestrate/orchestrate_runner.html
https://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/getstarted/config/pillar.html
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/orchestrate/orchestrate_runner.html

Show and TellShow and Tell

 Salt interactive commands

 Salt Logrotate management

 VSCode usage, features

 Git branch, commit, tag, push, merge

 Salt environment promotion

 Possible: CI/CD

 Salt interactive commands

 Salt Logrotate management

 VSCode usage, features

 Git branch, commit, tag, push, merge

 Salt environment promotion

 Possible: CI/CD

Questions?Questions?

 Are our logrotate policies going to conflict with RPMs? Do we need to make an effort to fix
those RPMs?

 Can we clear current logrotate policies in /etc/logrotate.d/*?

 Is our Salt code going to conflict with the Linux team's code? Whatever they're doing is a
total black box.

 Should we schedule a regular meeting to introduce new concepts?

 Should we schedule regular training sessions to facilitate knowledge transfer?

 Are our logrotate policies going to conflict with RPMs? Do we need to make an effort to fix
those RPMs?

 Can we clear current logrotate policies in /etc/logrotate.d/*?

 Is our Salt code going to conflict with the Linux team's code? Whatever they're doing is a
total black box.

 Should we schedule a regular meeting to introduce new concepts?

 Should we schedule regular training sessions to facilitate knowledge transfer?

Are you woke yet?Are you woke yet?

	Slide 1
	What is DevOps?
	What is DevOps?
	What is DevOps?
	Why do we need DevOps?
	Why do we need DevOps?
	Goals
	Goals
	How will we achieve our long-term goals?
	How will we achieve our long-term goals?
	How will we achieve our long-term goals?
	How will we achieve our long-term goals?
	Concepts: Version Control
	Concepts: Environments
	Concepts: Declarative vs. Imperative
	Concepts: Declarative vs. Imperative
	Concepts: Imperative Syntax
	Concepts: Declarative Syntax
	Concepts: Configuration Management
	Show and Tell
	Questions?
	Are you woke yet?

