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What is DevOps?What is DevOps?

 DevOps is the alignment of people, practices, tools and philosophies to increase an 
organization’s ability to deliver services at higher velocity. This speed enables organizations 
to better serve their customers, and to compete in a rapidly-evolving market.
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What is DevOps?What is DevOps?

 At the core, DevOps is about the cultural shift towards Continuous Improvement (or the philosophy 
of Kaizen, as it’s known in Japan).

 The Kaizen philosophy was pioneered by Toyota in the early 1970s, and has since spread throughout the 
manufacturing industry. Only in recent years have IT organizations begun to adopt this mindset.

 Kaizen’s goals are:

 To ensure maximum quality

 Eliminate waste within business processes

 Improve operational efficiency through the standardization of tools and procedures

 Provide consistent and clear feedback

 Empower employees to identify areas for improvement and suggest practical solutions

 “If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes 
thinking about solutions.” – (Albert Einstein)
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to:
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 Adopt bleeding-edge technologies and processes that will make us the best DevOps 

team within $REDACTED Technologies

 Re-architect our software to follow industry best practices (such as the Twelve-Factor App)

 Automate the DevOps team out of work, making every other member of STOP a 
competent DevOps engineer in the process

 Develop a flexible, modular DevOps migration and knowledge transfer program

 Provide world-class reliability, security and efficiency for our customers
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The First WayThe First Way
 The First Way states the following about the flow 

of work:

 Work should only flow in one direction

 No known defect should be passed downstream

 Always seek to increase the flow

 The First Way helps us think of IT as a value 
stream. Think of a manufacturing line, where 
each work center adds a component – and 
thus, value – to the line. Since each work center 
adds value, it is preferred that each work center 
does their part correctly the first time around.
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 The Second Way teaches us to think of 
information as a value-addition. When used 
correctly, feedback can help to optimize the 
value stream.

 “Why was there so much wait time at this work 
center? Resource A was held up.”

 “Why did this process have to be redone? 
Because it wasn’t done right the first time.”
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several stages in between. This structured release 
management process allows phased deployment 
(rollout), testing, and rollback in case of problems.
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 Are our logrotate policies going to conflict with RPMs? Do we need to make an effort to fix 
those RPMs?

 Can we clear current logrotate policies in /etc/logrotate.d/*?

 Is our Salt code going to conflict with the Linux team's code? Whatever they're doing is a 
total black box.

 Should we schedule a regular meeting to introduce new concepts?

 Should we schedule regular training sessions to facilitate knowledge transfer?
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