
DevOps 102DevOps 102
An Intro to

Configuration
Management

An Intro to
Configuration
Management

What is Configuration Management?What is Configuration Management?

 Configuration Management refers to the process of systematically handling changes to a
system in a way that maintains integrity over time.

 Automation plays an essential role in configuration management. It is the mechanism by
which the server reaches its (declarative) desired state, which was previously defined by
using (imperative) provisioning scripts in a tool-specific language.

 The CM process is widely used by military engineering to manage changes throughout the
lifecycle of complex systems, such as weapon systems, military vehicles, and information
systems. Outside the military, the CM process is also used with IT service management, civil
engineering and other industrial engineering segments such as roads, bridges, canals,
dams, and buildings.

 Configuration Management refers to the process of systematically handling changes to a
system in a way that maintains integrity over time.

 Automation plays an essential role in configuration management. It is the mechanism by
which the server reaches its (declarative) desired state, which was previously defined by
using (imperative) provisioning scripts in a tool-specific language.

 The CM process is widely used by military engineering to manage changes throughout the
lifecycle of complex systems, such as weapon systems, military vehicles, and information
systems. Outside the military, the CM process is also used with IT service management, civil
engineering and other industrial engineering segments such as roads, bridges, canals,
dams, and buildings.

Why do we need Configuration Management?Why do we need Configuration Management?

 CM applied over the lifecycle of a system provides visibility and control into its performance, functional, and physical
attributes. CM verifies that a system performs as intended, is configured and documented in sufficient detail to support its
projected life cycle.

 The relatively minimal cost of implementing CM is returned many fold in cost avoidance. The lack of CM, or its ineffectual
implementation, can be very expensive and sometimes can have such catastrophic consequences such as failure of
equipment or loss of life.

 CM emphasizes the functional relationship between parts, systems, and subsystems for effectively controlling system change.
Changes to the system are proposed, evaluated, and implemented using a standardized, systematic approach that ensures
consistency, and proposed changes are evaluated in terms of their anticipated impact on the entire system (i.e. “a diff”). CM
verifies that changes are carried out as prescribed and that documentation of items and systems reflects their true
configuration.

 A complete CM strategy ensures that documentation (e.g., requirements, design, test, and acceptance documentation) for
items is accurate and consistent with the actual physical design of the item. In many cases, without CM, the documentation
exists but is not consistent with the item itself. For this reason, employees are frequently forced to develop documentation
reflecting the actual status of the environment before they can proceed with a change. This reverse engineering process is
wasteful in terms of human resources and can be minimized or eliminated by using CM.

 CM applied over the lifecycle of a system provides visibility and control into its performance, functional, and physical
attributes. CM verifies that a system performs as intended, is configured and documented in sufficient detail to support its
projected life cycle.

 The relatively minimal cost of implementing CM is returned many fold in cost avoidance. The lack of CM, or its ineffectual
implementation, can be very expensive and sometimes can have such catastrophic consequences such as failure of
equipment or loss of life.

 CM emphasizes the functional relationship between parts, systems, and subsystems for effectively controlling system change.
Changes to the system are proposed, evaluated, and implemented using a standardized, systematic approach that ensures
consistency, and proposed changes are evaluated in terms of their anticipated impact on the entire system (i.e. “a diff”). CM
verifies that changes are carried out as prescribed and that documentation of items and systems reflects their true
configuration.

 A complete CM strategy ensures that documentation (e.g., requirements, design, test, and acceptance documentation) for
items is accurate and consistent with the actual physical design of the item. In many cases, without CM, the documentation
exists but is not consistent with the item itself. For this reason, employees are frequently forced to develop documentation
reflecting the actual status of the environment before they can proceed with a change. This reverse engineering process is
wasteful in terms of human resources and can be minimized or eliminated by using CM.

MisconceptionsMisconceptions

What it isWhat it is
 An automation tool

 Mutable (can be changed)

 For human tasks

 A traditional approach to network
automation and change management

 Pets

 An automation tool

 Mutable (can be changed)

 For human tasks

 A traditional approach to network
automation and change management

 Pets

What it’s notWhat it’s not
 A pipeline or a deployment tool

 Immutable (unchanging)

 For machine tasks

 A modern DevOps approach to change
management

 Cattle

 A pipeline or a deployment tool

 Immutable (unchanging)

 For machine tasks

 A modern DevOps approach to change
management

 Cattle

About This CourseAbout This Course

GoalsGoals
 Introduce Git, and familiarize oneself with

core concepts

 Introduce Bash scripting, and write a
simple script

 Familiarize oneself with the VSCode IDE,
task management, and extensions

 Deep-dive into Saltstack concepts and
usage

 Introduce Git, and familiarize oneself with
core concepts

 Introduce Bash scripting, and write a
simple script

 Familiarize oneself with the VSCode IDE,
task management, and extensions

 Deep-dive into Saltstack concepts and
usage

PrerequisitesPrerequisites
 GitKraken

 VSCode

 Bitbucket

 GitKraken

 VSCode

 Bitbucket

Connect to the Git ServerConnect to the Git Server

Link GitKraken to BitbucketLink GitKraken to Bitbucket
1. Open GitKraken. Navigate to File > Preferences >

Authentication.

2. Click on “Bitbucket Server”. Input the following information:

1. Host Domain: http://bitbucket.dal.$REDACTED.net/

3. Click on “Generate a token on the Bitbucket Server”.

4. Once redirected, give your token a name (such as “Ryan-
WorkPC”). Grant the following permissions:

1. Projects: Admin (or Write)

2. Repositories: Admin (or Write)

5. Click on “Create.” Copy your new token and paste it into
GitKraken. Then click on “Connect”.

6. Click on “Generate SSH key”, then “Manage SSH keys on
Bitbucket server”. Add your new public key on the server.

1. Open GitKraken. Navigate to File > Preferences >
Authentication.

2. Click on “Bitbucket Server”. Input the following information:

1. Host Domain: http://bitbucket.dal.$REDACTED.net/

3. Click on “Generate a token on the Bitbucket Server”.

4. Once redirected, give your token a name (such as “Ryan-
WorkPC”). Grant the following permissions:

1. Projects: Admin (or Write)

2. Repositories: Admin (or Write)

5. Click on “Create.” Copy your new token and paste it into
GitKraken. Then click on “Connect”.

6. Click on “Generate SSH key”, then “Manage SSH keys on
Bitbucket server”. Add your new public key on the server.

Clone the “Salt” repositoryClone the “Salt” repository
1. Click on File > Clone Repo > Bitbucket

Server.

2. Click “Browse” to choose a local directory
to copy your repo to.

1. I would recommend C:\Users\<youruser>\
Documents\Repos

3. Under the “STOP” project, choose “Salt”.
Click “Clone the repo!”

1. Click on File > Clone Repo > Bitbucket
Server.

2. Click “Browse” to choose a local directory
to copy your repo to.

1. I would recommend C:\Users\<youruser>\
Documents\Repos

3. Under the “STOP” project, choose “Salt”.
Click “Clone the repo!”

./http:%2F%2Fbitbucket.dal.$REDACTED.net%2F
./http:%2F%2Fbitbucket.dal.$REDACTED.net%2F

Checkout a Personal BranchCheckout a Personal Branch

Check out the “development” branchCheck out the “development” branch
1. In GitKraken, double-click the

“development” branch under “Remotes”.

2. You now have a “local” copy of the
latest code from the “development”
branch.

1. In GitKraken, double-click the
“development” branch under “Remotes”.

2. You now have a “local” copy of the
latest code from the “development”
branch.

Create a personal branchCreate a personal branch
1. Within GitKraken, click on “Branch”. Give

your branch a unique name, such as
“Feature-XYZ” or “Ryan-$REDACTED”.

2. You are now ready to work with this
code.

1. Within GitKraken, click on “Branch”. Give
your branch a unique name, such as
“Feature-XYZ” or “Ryan-$REDACTED”.

2. You are now ready to work with this
code.

Make Your First ChangeMake Your First Change

Connect VSCode to your projectConnect VSCode to your project
 Open up VSCode, and navigate to File >

Open Folder.

 Choose your local “Salt” repository, then
click on “Open.”

 You’re now ready to work with this repo.

 Open up VSCode, and navigate to File >
Open Folder.

 Choose your local “Salt” repository, then
click on “Open.”

 You’re now ready to work with this repo.

Make a changeMake a change
 Open up “README.md.”

 Make a trivial modification – then press “Ctrl+S” to
save the file.

 Return to GitKraken. You will notice that GitKraken is
aware of your changes – and will show you a “diff” of
the current and new file.

 To save your changes:

 “Stage” the modified file. (i.e. “git add”)

 Add a brief commit message, then commit (i.e. “git
commit”)

 Push your changes to the Remote server (i.e. “git push”)

 Open up “README.md.”

 Make a trivial modification – then press “Ctrl+S” to
save the file.

 Return to GitKraken. You will notice that GitKraken is
aware of your changes – and will show you a “diff” of
the current and new file.

 To save your changes:

 “Stage” the modified file. (i.e. “git add”)

 Add a brief commit message, then commit (i.e. “git
commit”)

 Push your changes to the Remote server (i.e. “git push”)

Merge Your Commits into DevelopmentMerge Your Commits into Development

Open a Merge Request/Pull RequestOpen a Merge Request/Pull Request
 In GitKraken, click on the “+” next to “Pull Requests”.

 Choose “Bitbucket server.” Use the following settings:

 From Repo: <STOP/Salt>

 Branch: <yourbranch>

 To Repo: <STOP/Salt>

 Branch: development

 Pull Request Title: <a brief description of your changes>

 Pull request description: <optional but recommended>

 Click on “Create pull request”.

 Now, you must wait for administrator approval to “merge” your changes into the “development” branch.

 Repeat indefinitely.

 In GitKraken, click on the “+” next to “Pull Requests”.

 Choose “Bitbucket server.” Use the following settings:

 From Repo: <STOP/Salt>

 Branch: <yourbranch>

 To Repo: <STOP/Salt>

 Branch: development

 Pull Request Title: <a brief description of your changes>

 Pull request description: <optional but recommended>

 Click on “Create pull request”.

 Now, you must wait for administrator approval to “merge” your changes into the “development” branch.

 Repeat indefinitely.

Write Your First Shell ScriptWrite Your First Shell Script

OverviewOverview
 Bash is among the most simple of all

scripting languages. At its core, Bash has
three main components:

 Commands

 Variables

 Logic

 We will be skipping logic in this tutorial.

 Bash is among the most simple of all
scripting languages. At its core, Bash has
three main components:

 Commands

 Variables

 Logic

 We will be skipping logic in this tutorial.

DefinitionsDefinitions
 Commands: if it can be run in Linux, it can be run in Bash. If

you have ever executed a command on a Linux server –
that command may be dropped into a Bash script with no
further action required.

 Variables: “Changing” or “variable” pieces of information.

 String:

 $HOSTNAME = c2ssvc01

 Boolean:

 $IS_ACTIVE = True/False (1/0)

 Integer:

 $APPLE_COUNT = 25

 List:

 $FRUITS = “Apple, Orange, Banana”

 Commands: if it can be run in Linux, it can be run in Bash. If
you have ever executed a command on a Linux server –
that command may be dropped into a Bash script with no
further action required.

 Variables: “Changing” or “variable” pieces of information.

 String:

 $HOSTNAME = c2ssvc01

 Boolean:

 $IS_ACTIVE = True/False (1/0)

 Integer:

 $APPLE_COUNT = 25

 List:

 $FRUITS = “Apple, Orange, Banana”

Write Your First Shell ScriptWrite Your First Shell Script

StepsSteps
1. Create a file named “test.sh”.

2. Add the shebang line. This tells Bash
where to look for the interpreter.

3. Add your name to the variable.

4. Add the command you would like to
execute.

5. Save the script, and execute:

1. bash test.sh

1. Create a file named “test.sh”.

2. Add the shebang line. This tells Bash
where to look for the interpreter.

3. Add your name to the variable.

4. Add the command you would like to
execute.

5. Save the script, and execute:

1. bash test.sh

ExampleExample

A Note About Shell ScriptsA Note About Shell Scripts

 When “logic” is used, scripts can become complicated and hard to understand.

 Example:

 ./salt/oracle/clone/files/setup/CLONE_SETUP_07012019.sh

 ./salt/rapid/menu.sh

 However, when scripts are written in a declarative fashion, they are simple, single-purpose, and easy to
understand.

 Example:

 ./salt/oracle/clone/files/clone-setup.sh

 ./tasks/vscode/salt-master-config.ps1

 When declarative scripts are coupled with Configuration Management – they can be scaled to infinity:

 Example:

 ./pillar/oracle/clone.sls

 When “logic” is used, scripts can become complicated and hard to understand.

 Example:

 ./salt/oracle/clone/files/setup/CLONE_SETUP_07012019.sh

 ./salt/rapid/menu.sh

 However, when scripts are written in a declarative fashion, they are simple, single-purpose, and easy to
understand.

 Example:

 ./salt/oracle/clone/files/clone-setup.sh

 ./tasks/vscode/salt-master-config.ps1

 When declarative scripts are coupled with Configuration Management – they can be scaled to infinity:

 Example:

 ./pillar/oracle/clone.sls

Salt: Two Modes of OperationSalt: Two Modes of Operation

Masterless ModeMasterless Mode
 In this mode, minions are configured directly.

There is no master handing-out changes.

 This mode is push-based; configurations are
pushed to servers directly, usually via
pipelines and continuous deployment tools.

 Orchestrations are difficult, because servers
are not part of a shared system; servers are
not aware of each other. Orchestrations are
typically performed by other tools.

 In this mode, minions are configured directly.
There is no master handing-out changes.

 This mode is push-based; configurations are
pushed to servers directly, usually via
pipelines and continuous deployment tools.

 Orchestrations are difficult, because servers
are not part of a shared system; servers are
not aware of each other. Orchestrations are
typically performed by other tools.

Masterful ModeMasterful Mode
 In this mode, minions are controlled and configured

by a master server. Minions are configured to sit
idle until they are given instructions.

 This mode is pull-based. Minions “reach-out” to the
master for instructions.

 Orchestrations are fully-supported within the Salt
ecosystem, but it may be difficult to introduce
other tooling, such as pipelines and continuous
deployment. Other tooling is complicated by the
interconnected nature of masterful mode,
authentication requirements, multi-server
dependencies, etc.

 In this mode, minions are controlled and configured
by a master server. Minions are configured to sit
idle until they are given instructions.

 This mode is pull-based. Minions “reach-out” to the
master for instructions.

 Orchestrations are fully-supported within the Salt
ecosystem, but it may be difficult to introduce
other tooling, such as pipelines and continuous
deployment. Other tooling is complicated by the
interconnected nature of masterful mode,
authentication requirements, multi-server
dependencies, etc.

Salt: Configuration FilesSalt: Configuration Files

Configuring minionsConfiguring minions
 Minions are primarily configured via files in the

following locations:

 /etc/salt/minion

 /etc/salt/minion.d

 However, STOP minions are managed exclusively
by the Linux Team, via files located at:

 /opt/salt/sms/etc/salt/minion

 /opt/salt/sms/etc/salt/minion.d

 To restart a minion, run:

 service salt-sms-minion restart

 Minions are primarily configured via files in the
following locations:

 /etc/salt/minion

 /etc/salt/minion.d

 However, STOP minions are managed exclusively
by the Linux Team, via files located at:

 /opt/salt/sms/etc/salt/minion

 /opt/salt/sms/etc/salt/minion.d

 To restart a minion, run:

 service salt-sms-minion restart

Configuring mastersConfiguring masters
 Masters are primarily configured via files in the following

locations:

 /etc/salt/master

 /etc/salt/master.d

 The Linux Team is responsible for a few minor settings.
Otherwise, management is left to STOP. Their changes
may be found in:

 /opt/salt/sms/etc/salt/master

 /opt/salt/sms/etc/salt/master.d

 To restart the master, run:

 pkill salt-master

 salt-master -d

 Masters are primarily configured via files in the following
locations:

 /etc/salt/master

 /etc/salt/master.d

 The Linux Team is responsible for a few minor settings.
Otherwise, management is left to STOP. Their changes
may be found in:

 /opt/salt/sms/etc/salt/master

 /opt/salt/sms/etc/salt/master.d

 To restart the master, run:

 pkill salt-master

 salt-master -d

Salt: Updating the Master ConfigurationSalt: Updating the Master Configuration

The TakeawayThe Takeaway
 Essentially, you should only ever need to

update configuration on the master.

 The configuration file we use is located in
the “Salt” repository, under:

 ./etc/salt/master.d/master.conf

 The default minion and master
configuration files for any given version of
Salt may be found at:

 https://docs.saltstack.com/en/latest/ref/c
onfiguration/examples.html

 Essentially, you should only ever need to
update configuration on the master.

 The configuration file we use is located in
the “Salt” repository, under:

 ./etc/salt/master.d/master.conf

 The default minion and master
configuration files for any given version of
Salt may be found at:

 https://docs.saltstack.com/en/latest/ref/c
onfiguration/examples.html

Updating the master configUpdating the master config
 The simplest way to update the Salt master is via an

automated script:

 This script will SSH into the Salt master, replace the
configuration file with the one on your machine, and
restart the Salt master daemon.

 This script may be executed in two ways:

 Run the Powershell code directly via:

 ./tasks/vscode/salt-master-config.ps1

 Run the VSCode Task via Ctrl+Shift+P:

 .vscode/tasks.json

 Tasks: Run Task

 Salt: Replace master configuration file

 The simplest way to update the Salt master is via an
automated script:

 This script will SSH into the Salt master, replace the
configuration file with the one on your machine, and
restart the Salt master daemon.

 This script may be executed in two ways:

 Run the Powershell code directly via:

 ./tasks/vscode/salt-master-config.ps1

 Run the VSCode Task via Ctrl+Shift+P:

 .vscode/tasks.json

 Tasks: Run Task

 Salt: Replace master configuration file

https://docs.saltstack.com/en/latest/ref/configuration/examples.html
https://docs.saltstack.com/en/latest/ref/configuration/examples.html
https://docs.saltstack.com/en/latest/ref/configuration/examples.html
https://docs.saltstack.com/en/latest/ref/configuration/examples.html

Salt: Running Arbitrary CommandsSalt: Running Arbitrary Commands

OverviewOverview
 Salt may be used to execute any command

across one or more servers. To do so, one must
run the commands from the master server.

 Example:

 salt ‘d2gw21’ test.ping

 salt ‘d2gw21’ cmd.run ‘df -h’

 Multiple servers may be managed via targeting
. In these examples, we use “globbing”:

 salt ‘d2*’ test.ping

 salt ‘d2gw*’ cmd.run ‘du –sh’

 Salt may be used to execute any command
across one or more servers. To do so, one must
run the commands from the master server.

 Example:

 salt ‘d2gw21’ test.ping

 salt ‘d2gw21’ cmd.run ‘df -h’

 Multiple servers may be managed via targeting
. In these examples, we use “globbing”:

 salt ‘d2*’ test.ping

 salt ‘d2gw*’ cmd.run ‘du –sh’

Using VSCode TasksUsing VSCode Tasks
 Similar to the process for updating the

master configuration file, these arbitrary
commands may be executed via a VSCode
task and Powershell script:

 Run the Powershell code directly via:

 ./tasks/vscode/salt-master-state.ps1

 Run the VSCode Task via Ctrl+Shift+P:

 .vscode/tasks.json

 Tasks: Run Task

 Salt: Execute a state

 Similar to the process for updating the
master configuration file, these arbitrary
commands may be executed via a VSCode
task and Powershell script:

 Run the Powershell code directly via:

 ./tasks/vscode/salt-master-state.ps1

 Run the VSCode Task via Ctrl+Shift+P:

 .vscode/tasks.json

 Tasks: Run Task

 Salt: Execute a state

https://docs.saltstack.com/en/latest/topics/targeting/compound.html
https://docs.saltstack.com/en/latest/topics/targeting/compound.html

Salt: StatesSalt: States

OverviewOverview
 Even though an administrator may run commands

directly against minions, Salt really wants to be used
in a declarative fashion (i.e. configuration data is
written explicitly in version control, and underlying
logic “trues up” the environment.) This is where states
come in.

 The core of the Salt State system is the SLS,
or SaLt State file. The SLS is a representation of the
state in which a system should be in, and is set up to
contain this data in a simple format. This is often
called configuration management.

 Salt states are located in the “Salt” repo, under ./salt.

 Even though an administrator may run commands
directly against minions, Salt really wants to be used
in a declarative fashion (i.e. configuration data is
written explicitly in version control, and underlying
logic “trues up” the environment.) This is where states
come in.

 The core of the Salt State system is the SLS,
or SaLt State file. The SLS is a representation of the
state in which a system should be in, and is set up to
contain this data in a simple format. This is often
called configuration management.

 Salt states are located in the “Salt” repo, under ./salt.

The Top FileThe Top File
 Most infrastructures are made up of groups of machines, each machine in

the group performing a role similar to others. To effectively manage these
groups, an administrator must be able to create group-specific roles. For
example, a group of machines serving as a gateway might have roles
indicating that those machines gateway service should always be running.

 In Salt, the file which contains a mapping between groups of machines on a
network and the configuration roles that should be applied to them is called
a top file.

 Top files are named top.sls by default and they are so-named because they
always exist in the "top" of a directory hierarchy that contains state files. That
directory hierarchy is called a state tree.

 Top files have three components:

 Environment: A state tree directory containing a set of state files to configure
systems.

 Target: A grouping of machines which will have a set of states applied to them.

 State files: A list of state files to apply to a target. Each state file describes one or
more states to be configured and enforced on the targeted machines.

 Most infrastructures are made up of groups of machines, each machine in
the group performing a role similar to others. To effectively manage these
groups, an administrator must be able to create group-specific roles. For
example, a group of machines serving as a gateway might have roles
indicating that those machines gateway service should always be running.

 In Salt, the file which contains a mapping between groups of machines on a
network and the configuration roles that should be applied to them is called
a top file.

 Top files are named top.sls by default and they are so-named because they
always exist in the "top" of a directory hierarchy that contains state files. That
directory hierarchy is called a state tree.

 Top files have three components:

 Environment: A state tree directory containing a set of state files to configure
systems.

 Target: A grouping of machines which will have a set of states applied to them.

 State files: A list of state files to apply to a target. Each state file describes one or
more states to be configured and enforced on the targeted machines.

Salt: PillarsSalt: Pillars

OverviewOverview
 Salt pillar is a system that lets you define

secure data that are ‘assigned’ to one or
more minions using targets. Salt pillar data
stores values such as ports, file paths,
configuration parameters, and passwords.

 Succinctly, pillars are the data that is “fed
into” Salt states. By comparison, pillars are the
“variable” information that is passed to the
declarative “states” or “scripts.”

 Salt pillars are located in the “Salt” repo,
under ./pillar.

 Salt pillar is a system that lets you define
secure data that are ‘assigned’ to one or
more minions using targets. Salt pillar data
stores values such as ports, file paths,
configuration parameters, and passwords.

 Succinctly, pillars are the data that is “fed
into” Salt states. By comparison, pillars are the
“variable” information that is passed to the
declarative “states” or “scripts.”

 Salt pillars are located in the “Salt” repo,
under ./pillar.

The Top FileThe Top File
 Salt pillar uses a Top file to match Salt

pillar data to Salt minions. This Top file is
identical to the Top file that is used to
match Salt states to Salt minions.

 Salt pillar uses a Top file to match Salt
pillar data to Salt minions. This Top file is
identical to the Top file that is used to
match Salt states to Salt minions.

Salt: HighstateSalt: Highstate

OverviewOverview
 The Salt “state.highstate” is a special kind of

Salt state that executes all states within all top
files, across the entire infrastructure. 9 times
out of 10, this is the command you will want
to execute.

 Highstate is a two-step process:

1. Generate declarative configuration files from
the Salt states defined in top.sls. By default,
states use the Jinja2 templating language.

2. Apply the generated files to the infrastructure.

 The Salt “state.highstate” is a special kind of
Salt state that executes all states within all top
files, across the entire infrastructure. 9 times
out of 10, this is the command you will want
to execute.

 Highstate is a two-step process:

1. Generate declarative configuration files from
the Salt states defined in top.sls. By default,
states use the Jinja2 templating language.

2. Apply the generated files to the infrastructure.

The CommandThe Command
 The command to execute a highstate looks

like this:

 salt ‘d2gw21’ state.highstate

 salt ‘d*’ state.highstate test=true

 Alternatively, this command is available as a
VSCode Task:

 Salt: Execute a state

 “state.apply” can be used to apply a single
state. Used without any parameters, it
behaves exactly like “state.highstate.”

 The command to execute a highstate looks
like this:

 salt ‘d2gw21’ state.highstate

 salt ‘d*’ state.highstate test=true

 Alternatively, this command is available as a
VSCode Task:

 Salt: Execute a state

 “state.apply” can be used to apply a single
state. Used without any parameters, it
behaves exactly like “state.highstate.”

Salt: OrchestrationsSalt: Orchestrations

OverviewOverview
 Executing states or highstate on a minion is

perfect when you want to ensure that a
minion is configured and running the way
you want. Sometimes, however, you want
to configure a set of minions all at once.

 For example, if you want to take a
database clone first, then restart several
webservers after, orchestrations will ensure
that matching configuration is applied
consistently across the entire service.

 Executing states or highstate on a minion is
perfect when you want to ensure that a
minion is configured and running the way
you want. Sometimes, however, you want
to configure a set of minions all at once.

 For example, if you want to take a
database clone first, then restart several
webservers after, orchestrations will ensure
that matching configuration is applied
consistently across the entire service.

The CommandThe Command
 The command to execute an

orchestration looks like this:

 salt-run state.orch orchestrate.oracle.clone
saltenv=development --async

 The command to execute an
orchestration looks like this:

 salt-run state.orch orchestrate.oracle.clone
saltenv=development --async

Salt: DemonstrationSalt: Demonstration

 Demonstrate the relationship between the Oracle clone Salt states, pillar data, and
orchestration state.

 Show the original script, and show the re-designed declarative script.

 Demonstrate the relationship between the Oracle clone Salt states, pillar data, and
orchestration state.

 Show the original script, and show the re-designed declarative script.

The Emergent Properties of DeclarationThe Emergent Properties of Declaration

 By writing scripts in a declarative fashion, we can think about problems as data points –
not complicated logic that must be interpreted.

 Declarative scripting brings to light issues that may otherwise be obscured by too much
logic.

 Configuration management tools are designed to be the pinnacle of well-designed, well-
written code in the tool’s native language (Salt is written in Python). The tool abstracts the
details of the underlying code, providing a simple, modular management interface that
enforces best practice code development.

 By writing scripts in a declarative fashion, we can think about problems as data points –
not complicated logic that must be interpreted.

 Declarative scripting brings to light issues that may otherwise be obscured by too much
logic.

 Configuration management tools are designed to be the pinnacle of well-designed, well-
written code in the tool’s native language (Salt is written in Python). The tool abstracts the
details of the underlying code, providing a simple, modular management interface that
enforces best practice code development.

Known DeficienciesKnown Deficiencies

 Current development practices require that we commit known, broken code to git – just
to test it.

 Salt cannot currently be tested in isolation. All changes must be tested in “standing”
development environments. Anything that breaks must be troubleshooted – rather than
disposed of and rebuilt.

 Changes may not be tested in development until after they have been merged into the
“development” branch. This is cumbersome and will lead to frustration.

 Salt has system-level dependencies, which can vary from server to server (depending on
that server’s workload.) This can lead to inconsistencies in Salt behavior.

 Masters and Minions are sometimes not running the same version.

 Current development practices require that we commit known, broken code to git – just
to test it.

 Salt cannot currently be tested in isolation. All changes must be tested in “standing”
development environments. Anything that breaks must be troubleshooted – rather than
disposed of and rebuilt.

 Changes may not be tested in development until after they have been merged into the
“development” branch. This is cumbersome and will lead to frustration.

 Salt has system-level dependencies, which can vary from server to server (depending on
that server’s workload.) This can lead to inconsistencies in Salt behavior.

 Masters and Minions are sometimes not running the same version.

Questions?Questions?

	Slide 1
	What is Configuration Management?
	Why do we need Configuration Management?
	Misconceptions
	About This Course
	Connect to the Git Server
	Checkout a Personal Branch
	Make Your First Change
	Merge Your Commits into Development
	Write Your First Shell Script
	Write Your First Shell Script
	A Note About Shell Scripts
	Salt: Two Modes of Operation
	Salt: Configuration Files
	Salt: Updating the Master Configuration
	Salt: Running Arbitrary Commands
	Salt: States
	Salt: Pillars
	Salt: Highstate
	Salt: Orchestrations
	Salt: Demonstration
	The Emergent Properties of Declaration
	Known Deficiencies
	Questions?

