
DevOps 103DevOps 103Building Our First Salt
Project

Building Our First Salt
Project

What Are We Building?What Are We Building?

 The Gateway servers regularly require the upload of new firmware revisions. We will be
attempting to build a project that automates the lifecycle of this process.

 The Gateway servers regularly require the upload of new firmware revisions. We will be
attempting to build a project that automates the lifecycle of this process.

RequirementsRequirements

 Transcribe commands from Davos’ notes and a change control document

 Copy firmware to a “lead” GW server.

 Perform checksum to verify firmware has not been modified from original.

 Make commands modular, such that they can support differing versions, packages,
products, etc.

 Build-in capabilities not only to provision, but to deprecate firmware.

 Transcribe commands from Davos’ notes and a change control document

 Copy firmware to a “lead” GW server.

 Perform checksum to verify firmware has not been modified from original.

 Make commands modular, such that they can support differing versions, packages,
products, etc.

 Build-in capabilities not only to provision, but to deprecate firmware.

Out-of-scopeOut-of-scope

 Installing any software (cmssupport is a part of STOP RPM packages)

 Configuring cmssupport

 Installing any software (cmssupport is a part of STOP RPM packages)

 Configuring cmssupport

LogicLogic

If / Then / ElseIf / Then / Else
INSTALL_PACKAGE=True

PACKAGE=BluTag

if $INSTALL_PACKAGE == True

then

 yum install -y $PACKAGE

 echo “$PACKAGE installed!”

else

 echo “$PACKAGE will not be installed.

done

INSTALL_PACKAGE=True

PACKAGE=BluTag

if $INSTALL_PACKAGE == True

then

 yum install -y $PACKAGE

 echo “$PACKAGE installed!”

else

 echo “$PACKAGE will not be installed.

done

For eachFor each
$PACKAGES=“$REDACTED,$REDACTED,
$REDACTED”

for $PACKAGE in $PACKAGES

do

 yum install –y $PACKAGE

 echo “$PACKAGE installed”

done

$PACKAGES=“$REDACTED,$REDACTED,
$REDACTED”

for $PACKAGE in $PACKAGES

do

 yum install –y $PACKAGE

 echo “$PACKAGE installed”

done

Test-Driven DevelopmentTest-Driven Development

 Tests are ALWAYS about what data you are feeding into a system, and what results you
expect to see.

 In Salt, tests can be as simple as creating pillars before you start working with code.

 Pillars are ultimately what will be used to perform integration tests, when using a tool like
KitchenCI.

 Tests are ALWAYS about what data you are feeding into a system, and what results you
expect to see.

 In Salt, tests can be as simple as creating pillars before you start working with code.

 Pillars are ultimately what will be used to perform integration tests, when using a tool like
KitchenCI.

Create a Pillar FileCreate a Pillar File

 To begin, we will create a pillar file that
contains a data structure we would like to
use.

 We will save this under:

 ./pillar/gateway.sls

 To begin, we will create a pillar file that
contains a data structure we would like to
use.

 We will save this under:

 ./pillar/gateway.sls

gateway:

 firmware:

 packages:

 $REDACTED:

 V7_9_1_27:

 target: ALL

 version_simple: 9.1.27

 present: True

 checksum: 15BC

 type: T

 bit_length: 128

gateway:

 firmware:

 packages:

 $REDACTED:

 V7_9_1_27:

 target: ALL

 version_simple: 9.1.27

 present: True

 checksum: 15BC

 type: T

 bit_length: 128

Add Pillar to Top FileAdd Pillar to Top File

 Now, let’s assign our pillar to an
environment and a target in the top file:

 ./pillar/top.sls

 Now, let’s assign our pillar to an
environment and a target in the top file:

 ./pillar/top.sls

development:

 ‘*gw*’:

 - gateway

development:

 ‘*gw*’:

 - gateway

Create a Salt StateCreate a Salt State

 With pillars out of the way, let’s create our
first state file:

 ./salt/gateway/init.sls

 With pillars out of the way, let’s create our
first state file:

 ./salt/gateway/init.sls

Include:

 - gateway.configure

Include:

 - gateway.configure

Create a Salt StateCreate a Salt State

 Now, let’s create a second:

 ./salt/gateway/configure.sls

 Let’s also update our top file:

 Now, let’s create a second:

 ./salt/gateway/configure.sls

 Let’s also update our top file:

development:

 ‘*gw*’:

 - gateway

development:

 ‘*gw*’:

 - gateway

Working with “configure.sls”Working with “configure.sls”

 Looking at our code, it is clear that most
of what we need to do will be performed
over the command line. Thus, we should
use the cmd.run function.

 Let’s create the most simple of states –
just to confirm that cmd.run is functioning
correctly.

 Looking at our code, it is clear that most
of what we need to do will be performed
over the command line. Thus, we should
use the cmd.run function.

 Let’s create the most simple of states –
just to confirm that cmd.run is functioning
correctly.

gateway-configure-{{saltenv}}:

 cmd.run:

 - name: echo “Testing Salt function!”

gateway-configure-{{saltenv}}:

 cmd.run:

 - name: echo “Testing Salt function!”

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.cmd.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.cmd.html

Testing “configure.sls”Testing “configure.sls”

 With that completed, let’s commit and
push our code to the “development”
branch.

 Now, run the following command to test
your changes:

 salt ‘d1gw01’ state.highstate
saltenv=development
pillarenv=development

 With that completed, let’s commit and
push our code to the “development”
branch.

 Now, run the following command to test
your changes:

 salt ‘d1gw01’ state.highstate
saltenv=development
pillarenv=development

Working with “configure.sls”Working with “configure.sls”

 Now that our states
are working properly,
let’s feed some data
into them. To do this,
we must import pillar
data.

 Now that our states
are working properly,
let’s feed some data
into them. To do this,
we must import pillar
data.

{% for package, versions in salt['pillar.get']('gateway:firmware:packages').items() %}

gateway-configure-{{ saltenv }}-{{ package }}-{{ version }}:

 cmd.run:

 - name: echo “Installing {{ package }} version {{ version }}!”

 - runas: tdcc

 - cwd: /usr/local/tdcc/cmssupport

{% endfor %}

{% for package, versions in salt['pillar.get']('gateway:firmware:packages').items() %}

gateway-configure-{{ saltenv }}-{{ package }}-{{ version }}:

 cmd.run:

 - name: echo “Installing {{ package }} version {{ version }}!”

 - runas: tdcc

 - cwd: /usr/local/tdcc/cmssupport

{% endfor %}

Working with “configure.sls”Working with “configure.sls”

Expected ResultExpected Result
 Now, if we run another highstate, we

expect to get this result:

 Installing $REDACTED version V2_11_00!

 Now, if we run another highstate, we
expect to get this result:

 Installing $REDACTED version V2_11_00!

Actual ResultActual Result
 Instead, we get this result:

 Installing $REDACTED version V2_11_00!

 Installing $REDACTED version V1_11_00!

 Instead, we get this result:

 Installing $REDACTED version V2_11_00!

 Installing $REDACTED version V1_11_00!

Working with “configure.sls”Working with “configure.sls”

 This happens because
we have not
excluded packages
from installation.

 To do this, we must
use if/then/else logic.

 This happens because
we have not
excluded packages
from installation.

 To do this, we must
use if/then/else logic.

<See project code><See project code>

Testing “configure.sls”Testing “configure.sls”

 From here, we should be able to test installing/removing packages by toggling data in our
pillar files.

 From here, we should be able to test installing/removing packages by toggling data in our
pillar files.

Moving ForwardMoving Forward

 Our project is far from complete. There are many more commands we must configure,
and there are inevitably going to be flaws in our design. Revision and testing will be
necessary.

 Remember to make incremental and small changes. Changing too much at once adds
unnecessary complexity to the troubleshooting process.

 Our project is far from complete. There are many more commands we must configure,
and there are inevitably going to be flaws in our design. Revision and testing will be
necessary.

 Remember to make incremental and small changes. Changing too much at once adds
unnecessary complexity to the troubleshooting process.

Questions?Questions?

	Slide 1
	What Are We Building?
	Requirements
	Out-of-scope
	Logic
	Test-Driven Development
	Create a Pillar File
	Add Pillar to Top File
	Create a Salt State
	Create a Salt State
	Working with “configure.sls”
	Testing “configure.sls”
	Working with “configure.sls”
	Working with “configure.sls”
	Working with “configure.sls”
	Testing “configure.sls”
	Moving Forward
	Questions?

